On the iteratively regularized Gauss-Newton method in Banach spaces with applications to parameter identification problems

نویسندگان

  • Qinian Jin
  • Min Zhong
چکیده

In this paper we propose an extension of the iteratively regularized Gauss– Newton method to the Banach space setting by defining the iterates via convex optimization problems. We consider some a posteriori stopping rules to terminate the iteration and present the detailed convergence analysis. The remarkable point is that in each convex optimization problemwe allow non-smooth penalty terms including L1 and total variation like penalty functionals. This enables us to reconstruct special features of solutions such as sparsity and discontinuities in practical applications. Some numerical experiments on parameter identification in partial differential equations are reported to test the performance of our method. Mathematics Subject Classification (2000) 65J15 · 65J20 · 47H17

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative methods for nonlinear ill-posed problems in Banach spaces

In this paper, we study convergence of two different iterative regularization methods for nonlinear ill-posed problems in Banach spaces. One of them is a Landweber type iteration, the other one the iteratively regularized Gauss– Newton method with an a posteriori chosen regularization parameter in each step. We show that a discrepancy principle as a stopping rule renders these iteration schemes...

متن کامل

Newton-type regularization methods for nonlinear inverse problems

Inverse problems arise whenever one searches for unknown causes based on observation of their effects. Such problems are usually ill-posed in the sense that their solutions do not depend continuously on the data. In practical applications, one never has the exact data; instead only noisy data are available due to errors in the measurements. Thus, the development of stable methods for solving in...

متن کامل

Convergence and Application of a Modified Iteratively Regularized Gauss-Newton Algorithm

We establish theoretical convergence results for an Iteratively Regularized Gauss Newton (IRGN) algorithm with a specific Tikhonov regularization. This Tikhnov regularization, which uses a seminorm generated by a linear operator, is motivated by mapping of the minimization variables to physical space which exposes the different scales of the parameters and therefore also suggests appropriate we...

متن کامل

A convergence analysis of the iteratively regularized Gauss--Newton method under the Lipschitz condition

In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.

متن کامل

A convergence analysis of the iteratively regularized Gauss-Newton method under Lipschitz condition

In this paper we consider the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed inverse problems. Under merely Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2013